
INTRODUCTION  

The way that software is developed, built, and delivered has 

gone through a profound transformation. Across industries, 

teams have moved to nimbler software engineering processes 

in an attempt to reduce time to market and improve cost 

effectiveness. To fuel this change, there has been an explosion 

in the growth of build and application release tools to enable 

DevOps processes with Continuous Integration and Continuous 

Delivery. In their 2017 survey, RightScale found that 84% of 

enterprises and 72% of SMBs are adopting DevOps, underscoring 

the ubiquity of the broader digital transformation movement 

across the marketplace.

The results speak for themselves: Organizations are making 

large investments in DevOps tools and processes to accelerate 

the delivery of capabilities to customers while maintaining 

quality and optimizing cost. Central to this transformation is the 

systemic identification and elimination of manual processes and 

tasks with automation. According to the 2017 State of DevOps 

Report, the firms that have been most successful at making the 

transition to DevOps have automated far more than their lower 

performing peers. 

The high performers have automated 33% more of their 

configuration management, 27% more of their testing, 30% more 

of their deployments, and 27% more of their change approval 

process than their low-performing peers. As a result, the high 

performers have been able to deploy 46x more frequently and 

have 440x faster lead times, a 96x faster mean time to recovery, 

and a 5x lower change failure rate. By leveraging automation 

and DevOps practices, world-class enterprises are able to 

move much faster than their competitors while simultaneously 

delivering at a higher quality. 

Directly from the State of DevOps report, this table quantifies 

the extent to which high performers outdo competition on 

key agility metrics that help their business outperform the 

competition in the market with quicker, more stable, and higher-

quality software releases.

THE DEVOPS DATABASE CHALLENGE  

As tools, processes, and best practices permeate the 

marketplace, there still remain some notable barriers preventing 

many firms from realizing the true value of their hefty 

investments into DevOps. At the center of this issue is the 

myopic interpretation of what encompasses an “application.” 

For many software teams, the data or persistence layer — 

more finely, the database in particular — has been effectively 

forgotten. As a result, while there has been a sharp focus and 

tremendous acceleration in the velocity of application software 

releases, updates to the underlying database have remained 

manual and are increasingly a bottleneck to the overall software 

delivery pipeline. 

The omission of the database was not entirely accidental. 

Managing the database in a DevOps environment is very 

255 BROUGHT TO YOU IN PARTNERSHIP WITH

!   Introduction

!   The DevOps Database Challenge

!   DevOps for the Database Best Practices:   
     Database Release Automation

!   Conclusion

C O N T E N T S

DZONE.COM  |  © DZONE, INC. VISIT DZONE.COM/REFCARDZ FOR MORE!

DevOps for Database 
BY SANJAY CHALLA 

https://assets.rightscale.com/uploads/pdfs/RightScale-2017-State-of-the-Cloud-Report.pdf
https://puppet.com/resources/whitepaper/state-of-devops-report
https://puppet.com/resources/whitepaper/state-of-devops-report
https://dzone.com/refcardz
https://www.datical.com/overview-dzone/?utm_source=dzone&utm_medium=ad&utm_content=box-ad


https://www.datical.com/overview-dzone/?utm_source=dzone&utm_medium=ad&utm_content=full-page


challenging. While it’s perfectly okay — and frankly espoused 

by Agile zealots — for developers to move quickly and “fail 

fast, fail often” with application updates, the same is not true of 

the database! Databases hold incredibly valuable state, and a 

bad database change can result in severe data loss, application 

outages/downtime, or security holes that can be exploited 

to exfiltrate sensitive business data. A careless change to a 

production database can be devastating both to a firm’s finances 

and reputation. As an example, IDC reports that the average cost 

of a critical application failure per hour is $500,000 to $1 million, 

not to mention the damage to the brand reputation.

There’s a reason that the last decade has seen an unprecedent 

growth in tools to enable rapid application software development 

while the database has remained effectively untouched by 

similar automation. The database has long been a black box, 

closely guarded by administrators chartered with the sole 

task of securing critical business data essential to the firm. 

Understandably, there has long been a strong aversion to change 

on the database side because change historically came with risk 

to the valuable business assets stored within the database.

With application software teams moving faster than ever, it’s 

become untenable to treat the database like a black box 

surrounded with a heft of manual process. There are solutions that 

focus on the agility of the database which allow for rapid changes 

while reducing risk. The trick is to leverage the existing tooling 

and workflow already in place for application software and to add 

automation to the database. The goal is to treat database code 

just like application code instead of treating the database with a 

manual out-of-band process.

As application code transitions from development, through 

testing environments, and finally to production, the currently 

manual database change process can add significant delay, error, 

and risk to the overall software release. 

DEVOPS FOR THE DATABASE BEST PRACTICES: 
DATABASE RELEASE AUTOMATION  

There exist a handful of commercial vendors and open-source 

projects aimed at bringing DevOps automation to the database. 

Whether you’re opting to build a totally custom solution, extend 

an open-source project, or invest in a commercial off-the-shelf 

solution, the remainder of this guide focuses on key best practices 

that your DevOps database solution should meet in order for you 

to get the most out of your investment.

BEST PRACTICE: TRACK DATABASE CODE WITH 
APPLICATION CODE
Just like application software changes are tracked in source 

control, to understand the evolution of the database, it’s equally 

important to track database changes with a source code control 

(SCC) solution as well. Choose a DevOps database solution that 

allows you to use your existing application SCC solution, such 

as Subversion, Git, Microsoft TFS, etc., instead of a solution 

that implements a separate SCC uniquely for the database or 

a solution that simply cannot track database changes in your 

SCC system out of the box. The goal is to minimize changes to 

the developer workflow without taking on a large integration or 

extension project.

By ensuring that the database automation solution integrates 

out-of-the-box with the same SCC system used for application 

code, developers can keep their existing workflow. This reduces 

the complexity, cost, and maintenance associated with having a 

separate SCC system in place for just the database.

Diagram: It’s counterproductive to have a separate source code 

control solution for the database code that is independent of 

the system used for application code. It means that effort has 

to be duplicated (code needs to be checked in two times to two 

different systems). It also means that database changes that 

support application features can drift and get out of sync as they 

flow through separate processes, adding to confusion and error 

while impeding velocity.

3

DZONE.COM  |  © DZONE, INC.

DEVOPS FOR DATABASE

BROUGHT TO YOU IN PARTNERSHIP WITH

https://dzone.com/articles/digging-fail-fast-fail-often
https://dzone.com/articles/digging-fail-fast-fail-often
https://kapost-files-prod.s3.amazonaws.com/published/54ef73ef2592468e25000438/idc-devops-and-the-cost-of-downtime-fortune-1000-best-practice-metrics-quantified.pdf


It’s very efficient to check both application code and database 

code into a single source code control solution. There is no 

disruption to the development process, and it’s much 

easier to keep application and corresponding database 

changes synchronized through the build, test, and release 

process/pipeline, as things can always be referenced against 

a single commit.

Tip: Be wary of solutions that have a separate SCC system in 

place for the database. With two SCC systems, either two people 

will follow two separate processes or one person will end up 

doing two duplicate tasks to achieve a goal. Coupled with the 

additional costs for integration and maintenance, adding another 

SCC solution just for the database is a poor investment that fails 

to eliminate error and improve visibility.

BEST PRACTICE: RULE DEFINITION AND AUTOMATED 
ENFORCEMENT FOR PERFORMANCE AND SECURITY
Businesses are keen to minimize risk, cost, and downtime. 

A firm can go out of business if a critical application slows to 

a crawl, fails entirely, or worse, if production data is lost or 

becomes available to competitors or attackers. To maintain 

system performance and to protect their valuable data, 

organizations typically have a lot of rules, best practices, 

standards, and conventions governing the database. Currently, 

DBAs serve as a manual safeguard and end up reviewing any 

and all changes that need to be made to the database to 

ensure they meet all the organizational standards, rules, and 

best practices.

To eliminate the bottleneck of this manual process, it becomes 

necessary to automate the very necessary, yet mundane efforts 

of DBAs. This way, database changes can move at the speed of 

application changes and DBAs can be freed to address higher 

value projects such as performance improvements, upgrades, 

etc. Look for a solution that allows appropriate granularity in 

rule definition and enforcement. Ideally, this means a solution 

with an object model that can enforce changes at an individual 

changeset level so that rules such as “having a foreign key that 

points to a primary key that does not exist” can be easily defined 

and enforced. 

Tip: Be wary of solutions that simply rely on regular expressions 

for rule definition. Relying solely on regular expressions makes it 

nearly impossible to manage simple structural standards. Instead, 

with regular expressions, a rule will have to be created to reject 

any changes relating to specific names or keywords and create a 

lot more review cycles and manual intervention for DBAs.

rule "All tables should have a primary key or unique 
constraint"
 when
  $db_model_container : ModelContainer( )
 then
  String errorMessage = "";
  for (Schema schema : $db_model_container.
getNewModel().getSchemas()) {
   for (Table table : schema.
getTables()) {
    if (!table.getName().
toUpperCase().equals("DATABASECHANGELOGLOCK") && !table.
getName().toUpperCase().equals("DATABASECHANGELOG")) {
     if ((table.
getPkConstraint() == null) && table.getUniqueConstraints().
isEmpty()) {
      
errorMessage += "Table (" + table.getName() + ") needs to 
have either a primary key or unique constraint.<br/>\n";
     }
    }
   }
  }
  if (errorMessage != "") {
   insert(new Response(ResponseType.
FAIL, errorMessage, drools.getRule().getName()));
  }
end

This is an example rule definition done in Drools that can be con-
sumed by Datical’s Rules Engine. Datical is one of the commercially 
available solutions for database release automation that supports 
rule definition against objects, as recommended by the best practice.

Beyond rules that can be written against database objects at a 
changeset level, look for tools that can flag destructive changes 
before they happen. It’s common for DBAs to manually check 
for things like, “Is there data in the column that this SQL script 
is trying to drop?” A tool that allows for the automation of such 
checks will save even more time and will better align the pace of 
database changes with application code changes.

Tip: SQL cannot simply be evaluated in isolation; it has to be 
evaluated in the context of the target database state. As such, 
look for products that can ingest and simulate changes against 
the target database state to truly free DBAs from the manual 
process and speed up the database release process.

This is an excerpt from a report generated by Datical DB, which 
has found some SQL that was checked in by a developer that 
violates the rule that tables should have a primary key or unique 
constraint. By automating and enforcing rules, these tools make  
it easy to spot issues in SQL change scripts and facilitate  
quicker remediation.

BEST PRACTICE: ENABLE DEVELOPER SELF-SERVE AND 
PROVIDE IMMEDIATE FEEDBACK
Another fundamental tenant in addressing the database bottleneck 
is to enable developers to self-serve. Today, developers need to 
wait for days to hear back from a DBA about whether their change 

4

DZONE.COM  |  © DZONE, INC.

DEVOPS FOR DATABASE

BROUGHT TO YOU IN PARTNERSHIP WITH

https://en.wikipedia.org/wiki/Drools


is valid or not and then repeat the cycle of waiting every time rework 

is necessary. In many organizations, the SLA between the DBA team 

and development team is defined in days or weeks. This means that a 

database change submitted by a developer at the start of a sprint may 

end up getting rejected at the very end of the sprint or possibly even 

after the sprint is completed, entirely throwing a release off track. The 

manual database change review process breaks DevOps and is simply 

unsustainable.

This is another issue that can be addressed with automation and 

Continuous Integration. It’s a manual and tedious effort to involve 

DBAs in every change that a developer wants to make. Building 

on the previous best practice about defining rules and automating 

enforcement, this best practice is to look for a solution that can 

automatically evaluate the changes that developers check into SCC 

to provide feedback in minutes instead of the usual days or weeks it 

currently takes for a manual DBA review.  As a bonus, look for tools 

that integrate with build systems, such as Jenkins or in-house solutions, 

and which break the build if the database code doesn't pass validation.

As a bonus, choose tools that further enhance feedback and developer 

self-serve. As an example, Datical integrates with Delphix so developers 

can get on-demand copies of masked production data. With better 

feedback and self-serve, the team can deliver more quickly and with 

less risk – especially since everyone can operate with an understanding 

of the live production environment.

Tip: Avoid introducing process changes that lock the database down 

further. In order to realize an improvement in database change velocity, 

it’s necessary to allow developers to retain the workflow for application 

changes, where there can be simultaneous development against 

a given feature area. Merge conflicts are identified when pushing 

to source code, and functional issues that result in build failure or 

automated test failure are returned to developers for remediation. The 

database workflow needs to be able to mirror this, with checks running 

when code is checked into a source code repository and any failures 

getting immediately reported back to the developer.

Once the DBA team codifies organizational policies and checks into 

rules, the best database release automation tools allow developers to 

benefit directly from the automated rule enforcement. By integrating 

the automation with build tools, database changes that are checked in 

can immediately go through validation. If there is a bad change, it will 

break the build and developers will be immediately notified. This allows 

DBAs to be free from the constant development churn and focus their 

efforts on higher-priority projects instead of getting overrun and work-

ing overtime to keep up with development while allowing developers to 

self-serve and immediately get feedback on the database code they are 

checking in.

CREATE TABLE T_SocialMedia (
    [Socialid] [int] IDENTITY(1,1) NOT NULL,
    [Name] [nvarchar](200) NOT  NULL,
    [URL] [nvarchar](200)  NULL,
);

This is some sample SQL that is responsible for creating a new 
database table. With database release automation tools, when 
code like this is checked in and built, it results in build failures, as 
the automated rule checking can catch that this table doesn’t 
have a primary key or unique constraint.

When tools like Datical are integrated with build automation tools 
like Jenkins, the build will fail if bad SQL code (like the example 
code above, creating the T_SocialMedia table) is checked into 
source code control and is included in the build pipeline. By 
integrating database code directly into the existing application 
release pipeline, any bad database changes can be immediately 
discovered and developers can be notified to make prompt fixes.

CREATE TABLE T_SocialMedia (
    [Socialid] [int] IDENTITY(1,1) NOT NULL,
    [Name] [nvarchar](200) NOT  NULL,
    [URL] [nvarchar](200)  NULL,
    CONSTRAINT PK_T_SocialMedia PRIMARY KEY (Socialid)
);

Once the build fails, the developer can make a fix and check in 
SQL that meets organizational standards and rules. In this case, 
it’s simply a matter of not violating the rule that all tables should 
have a primary key or unique constraint by defining Socialid as 

a primary key.

When the updated database code is checked in and a new build 
is kicked off, DevOps tools for the database can validate that 
no rules are violated and can allow the build to proceed. With 
integration with build tools like Jenkins, it’s possible to see, in 
this case, that the change was successfully built and has been 

deployed to higher environments.

BEST PRACTICE: BUILD ONCE, DEPLOY OFTEN
Just as with application code changes, it’s important to follow 
the mantra of “build once, deploy many” with database changes, 
as well. If it requires custom or manual work to deploy a given 

5

DZONE.COM  |  © DZONE, INC.

DEVOPS FOR DATABASE

BROUGHT TO YOU IN PARTNERSHIP WITH

https://earlyandoften.wordpress.com/2010/09/09/build-once-deploy-many/


database change into each environment along the pipeline, it 
becomes very difficult to isolate issues. Fundamentally, without 
building the database change into an artifact along with the 
application code, it becomes very difficult when things go wrong 
to tell if it is a bad database change that somehow worked in 
lower environments or if it is a valid change that is failing because 
there's something abnormal with the environment itself.

Tools like Datical integrate with artifact repository solutions such 
as JFrog Artifactory, and allow database code to be included in 
a single artifact that also contains the application code when the 
build is successful.

Solutions such as Datical allow database changes that have been 
checked into source code and that have passed the automated rule-
checking to get built into an artifact along with application code. 
This way, the workflow automation and process can be maintained 
across the rest of the pipeline, and any issues can quickly be traced 

back to the environment or the offending code change.

BEST PRACTICE: AUTOMATE THE DATABASE RELEASE
Beyond rules and artifacts, it is essential for the database release 
automation tool to actually automate the database change! 
However, before blindly deploying a change that has managed to 
pass through all the rules that have been created, look for tools 
that allow you to simulate the impact of a change before actually 
committing to the change. After all, there may be nuances to the 
environment in question and there may not be rules to safeguard 
against what might actually be a bad change.

ToolsTools like Datical integrate with solutions like Jenkins, 

IBM Urban Code, CA Release Automation, and XLDeploy from 

XebiaLabs (shown above) in order to automate the actual 

deployment of the single artifact.

Database automation tools simulate changes to the database 

and compare the simulated database against the original. These 

tools also allow the rules used to validate changes to be selected 

based on environment. Lastly, by integrating with the rest of the 

application release automation pipeline, the best tools increase 

the overall return and value of the entire Continuous Integration 

and Continuous Delivery toolchain.

Tip: Be wary of tools that still keep database release automation 

a separate process from application automation. This can lead to 

the database and the application getting out of sync, and means 

that there is duplication in process or people during release. 

Make sure that the tools you select or augment integrate with 

your existing application release automation tooling. 

BEST PRACTICE: KNOW THE STATE OF EACH DATABASE
Both for operational sanity and for regulatory compliance, it’s 

necessary for organizations to clearly understand the state of 

each of their databases — and certainly at least the production 

database! Look for a database release automation solution 

that provides visibility into state of each database in each 

environment. Look for a solution that can quickly answer, “What 

changes have been applied to this database?” or “What is the 

difference between the application database in the staging 

environment and the production environment?” 

With more rapid release cadences and more people involved in 

the release process, it becomes increasingly more difficult to 

answer exactly what changes have and have not been applied to 

a database in a given environment. To avoid nasty surprises, to 

pass audits, and to ensure better uptime, it’s essential to have a 

complete understanding of the state of each database.

Tools like Datical provide a dashboard view that summarizes the 

state of each database environment. Any environments that do 

not have the latest changes can be quickly identified, and teams 

can quickly drill into what outstanding changes have been made 

to each environment, regardless of the release pipeline that the 

environment belongs to.

6

DZONE.COM  |  © DZONE, INC.

DEVOPS FOR DATABASE

BROUGHT TO YOU IN PARTNERSHIP WITH



7 DEVOPS FOR DATABASE

BEST PRACTICE: APPLICATION/DATABASE 
SYNCHRONIZATION AND FLEXIBLE FEATURE 
DEPLOYMENT
For a variety of reasons, it is common for an organization to revise 

the release plan to only include a subset of the features originally 

planned. As such, any database release automation solution needs 

to be able to accommodate for the inevitable feature churn that 

is a reality in high velocity Agile software development teams. 

Look for solutions that allow database changes corresponding 

to specific features and releases to be labelled accordingly, with 

mechanisms to ignore or unignore labels. The best tools integrate 

with ticketing systems such as JIRA to enable traceability from de-

velopment all the way through the build and deployment pipeline.

Branch-based development, which is increasingly common across 

most enterprises, is much easier when the database release 

automation solution ensures that database changes can remain 

synchronized with application changes and flow in lockstep with 

application changes from development through production. 

Confusion around the question, “What application feature does 

this particular database change have to do with?” can be entirely 

eliminated. Release quality and is improved, as any unnecessary 

database changes that might impact the production version of 

the application can be left behind, along with corresponding 

application changes in lower environments until the feature set is 

ready for promotion to higher environments.

Tools like Datical allow immediate visibility in specific feature sets 

by integrating with ticketing systems like JIRA and providing a 

web UI to understand where specific changes have been made. In 

this particular example, the change JIRA-104 has been deployed 

to all environments except Production. This ability to quickly 

understand the state of each database and know what has and 

has not been deployed can expedite troubleshooting and increase 

both the stability and the quality of releases.

CONCLUSION  

As teams continue to improve the throughput and velocity of 
application changes, the database is increasingly the critical 
bottleneck. As long as database changes remain a manual 
process, no increase in DBA headcount can scale the manual 
process to keep up with application updates. It’s necessary for 
teams to adopt true database automation and to treat database 
code just like application code in order to eliminate the database 
bottleneck. Given that the database holds valuable state, it’s 
equally necessary that any automation tools for the database 
are equipped with sufficient safeguards to avoid data loss, 
application downtime, or security issues from occurring when an 
update is pushed live in production.

With proper database release automation, the database is no 
longer a bottleneck. Database changes can flow in sync with 
application changes through the release pipeline. 

In considering a database change and release automation 
solution, keep in mind the best practices outlined to ensure 
the best return on investment. The best database automation 
solution will seamlessly fit into an existing application release 
automation toolchain and will substantially increase the overall 

value of the existing software release pipeline. 

ABOUT THE AUTHOR

SANJAY CHALLA is a senior product marketing manager with over six years of experience in enterprise 
software. With previous experience in both product marketing and product management, Sanjay has a 
deep understanding of modern software engineering tools and methodologies.

BROUGHT TO YOU IN PARTNERSHIP WITH

Copyright © 2017 DZone, Inc. All rights reserved. No part of this publication may be 

reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, 

mechanical, photocopying, or otherwise, without prior written permission of the publisher. 

Refcardz Feedback Welcome: refcardz@dzone.com 

Sponsorship Opportunities:  sales@dzone.com 

DZone, Inc.  150 Preston Executive Dr.  Cary, NC 27513

888.678.0399  -  919.678.0300 

mailto:refcardz%40dzone.com?subject=
mailto:sales%40dzone.com?subject=
http://www.dzone.com

