
D
Z

O
N

E
.C

O
M

/R
E

F
C

A
R

D
Z

1

BROUGHT TO YOU IN PARTNERSHIP WITH257262

 INTRODUCTION TO

DevOps Analytics
WRITTEN BY LUCA MILANESIO CO-FOUNDER, GERRITFORGE

THE HIDDEN VALUE OF YOUR CI/CD PIPELINE
Today's world is driven by rapid change. Failing to keep up with the

pace of the evolution of technology and business models might lead

even a large corporation to collapse in the blink of an eye. DevOps

allows software, and thus businesses, to increase the speed of

development and adapt to an ever-changing market, maintaining a

level of quality and reliability that meet customers' expectations.

There is a lot of pressure on dev teams to release on time, and

decreasing the time-to-market is essential in today's highly competitive

environment.

When something goes wrong with a software release, the costs

associated can be overwhelming, going from urgently producing patches

to rolling back to the previous version when possible, if not having to re-

engineer or even redesign significant portions of the software.

What we lack is proper visibility into the development process that

would allow us to estimate the risks attached to a software release

correctly. We want to have historical data to analyze and estimate a

probabilistic measure of the success of a new release.

The Continuous Integration and Continuous Delivery (CI/CD for short)

pipeline is the engine that drives the DevOps methodology and allows

teams to streamline the iterations of software changes from the initial

idea, to the rollout, to the entire customer base. With a fast and efficient

CI/CD pipeline, all the people involved in the design, implementation,

testing, and rollout of software changes can work together and

communicate seamlessly at any stage.

The CI/CD pipeline produces a lot of logs and events during every

stage, including audits and comments on the issue, reviews on the

code changes, build logs and tests result up to the deployment, and

production logs. The sheer amount and size of that information

lead many organizations to stash or even discard most of them. The

collection, storage, and analysis of that data allows us to understand

and improve the entire E2E DevOps pipeline.

The aim of DevOps Analytics is to uncover the hidden value of CI/CD logs

and events and demonstrate various benefits at different levels.

Each employee needs to see what is relevant to them in a form that is

suitable to their skills and understanding:

Release
Engineer

Product Man-
ager

Delivery
Manager

Head of Engi-
neering

Form
Deeply tech-
nical with
deep links

Functional
feature-based
view

Timeline view
of deliveries

Deliveries by
dev Teams

Value
Improve
pipeline
stability

Reduce time-to-
market, maxi-
mize customer
satisfaction

Prevent delays
and minimize
post-release
issues

Maximize
teams coopera-
tion, minimize
risks related to
a release

CONTINUOUS IMPROVEMENT DEVOPS LIFECYCLE
To implement DevOps Analytics successfully, we should define an

evolutionary process to focus on the final goal: speeding up the delivery

cycle without compromising quality.

CONTENTS

 ∠ THE HIDDEN VALUE OF YOUR CI/CD
PIPELINE

 ∠ THE PROCESS EXPLAINED, STEP BY STEP

 ∠ BATCH AND STREAM PROCESSING
CAPABILITIES

 ∠ DATA DIMENSIONS

 ∠ LOG AND EVENTS EXTRACTIONS

 ∠ FEEDING EVENTS INTO A DATA LAKE

 ∠ KPI EXTRACTIONS

 ∠ DASHBOARDS: DISPLAY AND
UNDERSTAND YOUR DATA

 ∠ TOOS AND AAAS EXTRACTIONS

http://dzone.com/refcardz
http://gerritforge.com/devops

204
D

Z
O

N
E

.C
O

M
/R

E
F

C
A

R
D

Z

2

BROUGHT TO YOU IN PARTNERSHIP WITH

http://dzone.com/refcardz
http://gerritforge.com/devops

D
Z

O
N

E
.C

O
M

/R
E

F
C

A
R

D
Z

3

INTRODUCTION TO DEVOPS ANALYTICS

BROUGHT TO YOU IN PARTNERSHIP WITH

Let's walk through a real-life example. The project: development of

the Gerrit Code Review Open-Source product; it has involved over

600 developers from all over the world with over 300 build jobs and

millions of tests executed.

THE PROCESS EXPLAINED, STEP-BY-STEP:
1. Define goals and KPIs. Assess the current situation and define

the parameters that you want to measure, typically based on

time and quality. Start small, with a maximum of two KPIs

per iteration.

Example:

• RT. Review Time: the interval between the first commit

pushed and the merge into the main branch.

• DQ: Deploy Quality: the percentage of features

deployed divided by the number of bugs.

2. Extract logs and collect events. Understand what you have

and collect it by keeping the metadata associated with the

dimensions you are willing to measure.

Example:

• Commits and Reviews: extract all the version control

code commits and the reviews activity associated.

• Pipeline logs: stream all the records of your CI/CD

pipeline, e.g., Jenkins, to long-term storage, such as S3

or HDFS. Keep build logs, metadata, and test results.

3. Calculate KPIs and publish to dashboards. The amount of

data accumulated needs to be transformed, processed, and re-

aggregated on a constant basis.

Example:

• Get Gerrit Code Reviews meta-data, and aggregate by

Jira Issues associated with them.

• Calculate the RT (average, p95, p99), DQ (average,

p95, p99).

4. Make changes to the process. Identify which part of the process

is more urgent to be addressed and improved. Focus on a single

aspect to improve during each cycle.

Example:

• Improve RT by defining new policies

• See if DQ increases or not

5. Assess the success of KPIs. Assess the change in trends for

the next observation period after the change and see what has

improved. Failures are part of learning.

6. Restart from point 1.

BATCH AND STREAM PROCESSING CAPABILITIES
The CI/CD pipeline generates a colossal amount of data, while requiring

real-time collection and analysis of KPIs. Trying to analyze all the data

at once would produce a lengthy and complicated job that would

struggle to keep up with the pace of incoming data.

Think about the processing of the data as a funnel with a small

opening. If too much liquid is poured into the funnel and the opening is

not large enough, the liquid would overflow.

We need to get the data onto a distributed storage system to allow for

parallel filtering and correlation tasks. We call this process the "batch

processing layer" or BP. The incoming data is collected and stored in a

time-series using a distributed storage implementation such as S3 or

HDFS. BP is typically implemented using a parallel execution engine,

such as YARN or Mesos, to run on a large-scale cluster to crunch all the

historical data and distill the information that we need for analysis.

BP has a significant startup phase overhead because it needs to

allocate the cluster, distribute the load, and run and collect the

results. However, it does not need to run all the time because it

works on a batch of data. Using a Cloud-based processing service

such as Amazon Elastic MapReduce (aka EMR) would allow avoiding

the setup and maintenance of the cluster and reducing costs by

paying only for the amount of time needed for crunching the data

and producing the results.

Secondly, we need to fill the gaps between batch executions. From

when the BP starts and ends, new data is coming through, and we need

to have a mechanism to adjust the results when new data comes in.

A new "stream processing" layer --- or SP --- can manage this type of

data flow. The amount of data is limited, and the way to transport and

process the data is different.

SP needs to be activated on-demand as data is coming through and

needs to be able to adjust the results obtained from BP with extra

delta-results coming from the additional data received. Speed is

more important than accuracy; the next BP phase can always adjust

any small skew in the results. Data gets collected using a Pub/Sub

mechanism such as Apache Kafka or Amazon Kinesis, and processing

happens "on-the-fly" through stream-based elaboration.

BP and SP together are the data sources that collect the distilled data

for further analysis.

DATA DIMENSIONS
The CI/CD pipeline produces a lot of unstructured data that contains

multiple facets. They all represent different views and aspects of what

happens and how changes have evolved over time. When collecting

the data, all these aspects need to be put into different axes that can be

retrieved more efficiently during the analysis phase. We call each axis

a dimension.

http://dzone.com/refcardz
https://www.gerritcodereview.com/

D
Z

O
N

E
.C

O
M

/R
E

F
C

A
R

D
Z

4

INTRODUCTION TO DEVOPS ANALYTICS

BROUGHT TO YOU IN PARTNERSHIP WITH

TIME

All data is evidence of what has happened, and thus the timestamp is

the first dimension we need when collecting and organizing the events.

The BP (Batch Processing Layer) can have a hierarchical data structure

where data gets archived under the top-down folder structure of their

associated timestamp.

Example: Year/month/day/hour.

PROJECT

The project represents the set of repositories that are the source of

the code or features produced, gives a vertical view of where the CI/

CD pipeline is heading to, and groups all the events that relate to and

influence its evolution.

Example of entities inside a single project: Jira projects, Confluence

spaces, Jenkins pipelines, and a set of Git repositories.

SYSTEM

The system identifies where the CI/CD pipeline is getting executed

and gives a view of how the system performs and reacts based on the

artifact produced.

Example of entities inside a single system dimension: Git Servers,

Jenkins masters and slaves, Docker containers, and other deployment

environments.

PEOPLE

This represents the stakeholders and players that make sure that the CI/

CD pipeline works, including the social links and organizational view of

the people around the project.

Example of the people dimension: User identities, their organizational

role, and group hierarchy.

LOG AND EVENTS EXTRACTIONS
VCS COMMIT INFO

The information of what code changes over time is extracted from the

Version Control System (VCS). An advanced version control system, such

as Git, contains the following information to be collected:

Field Information associated

Commit
SHA1

Global unique global identifier of the code change

Field Information associated

Author who originally wrote the code

Committer who participated in the editing and merge of the code

Subject the headline of what aspect of the functionality is involved

Issue ID References to the feature associated with the code change

Branch line of development for all the features contained in a release

Dimensions involved: time, repository, people

CODE REVIEW EVENTS

Extract and archive all interactions around the code, including feedback

from other members of the team. When using Git, this translates to the

extraction of the comments and associated score:

Field Information associated

Commit SHA1 List of code changes associated with the review

Change/Pull-Re-
quest Id

stream of commits associated to a feature under review

Reviewer other people involved in the validation of the code

Comment
textual feedback provided on the overall change or
individual lines of code

Label score
overall voting (positive, negative, neutral) on one aspect
of the change

CI BUILD META-DATA AND LOGS

Stream and store the logs and meta-data associated with all the

builds triggered on your Continuous Integration system. Each build

log contains precious information such as the metadata that helps

correlate upstream code changes:

Field Information associated

Commit SHA1 List of code changes associated with the build

Environment Label of where the build gets executed

Stages execution times How much time each stage of the build takes

Stage result Success or failure of one of the stage of the build

Test results Results of the execution of the code tests

Example: Jenkins CI has a logstash appender plugin that allows for

streaming of the build logs and metadata to a topic stream. Test results

are often published as JUnit XML results.

http://dzone.com/refcardz

D
Z

O
N

E
.C

O
M

/R
E

F
C

A
R

D
Z

5

INTRODUCTION TO DEVOPS ANALYTICS

BROUGHT TO YOU IN PARTNERSHIP WITH

ISSUE TRACKER EVENTS

Sudit of the issue tracker transitions can tell where the time is spent in

the early stages, even before the start of development.

The information captured is:

Field Information associated

Project name The high-level project that all the stories belong to

Issue id Unique id of the feature inside the project

Headline One-liner of what the story is about

Reporter /
Assignee

The person that created and then worked on the story

Old/New Status The transition of the story through the pipeline stages

The correlation of all the events with a single source story in the issue

tracker allows the Product Manager to query the data from a business

perspective while collapsing the project and source code view.

FEEDING EVENTS INTO A DATA LAKE
All the events happening on the CI/CD pipeline have different formats,

availability, aggregation, and schemas. The first stage is the collection

and storing of raw flat files in a time-based directory structure.

The traditional data warehouse model would approach the problem by

developing some long and expensive ETL (Extract-Transform-Load) jobs

that would feed a universal Business Intelligence multi-dimensional

cube for analysis on a relational database. That approach would not

scale well because of the following problems:

• The DevOps Analytics lifecycle is based on continuous

improvement: an ETL job would be forced to recalculate all the

data from scratch every time it got new metrics.

• The costs and time for maintaining the ETL job would impact the

ROI of the Analytics exercise

A better approach is to split the Transformation phase (T) into two parts:

1. Small-T: Preserve the data as much as possible with maximum

detail. Transformation is limited to the reduction of time-based

granularity, ID normalization across systems, and data-type

conversions.

2. Big-T: Join data from different sources and compute KPI values

relevant to the business.

The E(small-t)L phase has the following characteristics:

• Reduces disk space while keep the same level of information.

• Optimized for speed and selection.

The result is a massive reservoir of data called "Data Lake" that opens

the door to further analysis in a very flexible and open way by all the

other downstream analytics tools.

The Big-T phase, aka the KPI extraction, selects data from the

Data Lake using a higher-order language and displays them into

interactive dashboards.

KPI EXTRACTIONS
The goal of this phase is to distill information from the Data Lake and

aggregate data across three dimensions: Projects, Systems, and People.

Each of the target stakeholder roles need a different view of the same

data on those dimensions.

PROJECT AGGREGATION

Role Grouping Indicators

Release
Engineer

Development
branches

count(source code commits), count(tickets
implemented), count(tests executed),
average(test execution time), average(er-
rors/tests)

Product
Manager

Epics/Features
average, variance and p95(cycle-time to
production), average(errors/epics-fea-
tures), max(errors/epics-features)

Delivery
Manager

Sprint

sum(tickets), average, max, p99(lead
time to be ready for dev), average, max,
p99(ticket WIP time), average, max, p99(er-
rors/tickets done)

PEOPLE AGGREGATION

Role Grouping Indicators

Release Engineer Teams
sum(commits), sum(code added/re-
moved), sum(tests added/removed)

Delivery Manager Teams/people

sum(contributors), average(reviews/
commits), percentage(external
reviews/tot reviews), average(tickets
blocked time)

SYSTEM AGGREGATION

Role Grouping Indicators

Release
Engineer

Subsystem/
host

average(queue time), average(cpu time),
average(memory used), average(active
threads)

Delivery
Manager

Subsystem
average(tests execution time), average(ac-
tive hosts), average(cputime / hosts)

http://dzone.com/refcardz

D
Z

O
N

E
.C

O
M

/R
E

F
C

A
R

D
Z

6

INTRODUCTION TO DEVOPS ANALYTICS

BROUGHT TO YOU IN PARTNERSHIP WITH

DASHBOARDS: DISPLAY AND UNDERSTAND
YOUR DATA
Data visualization is an easy way of radiating information and keep your

KPIs visible, facilitating continuous monitoring, and focusing on the

objectives set for you or your team.

It allows an easy way to compare data, spot patterns, and find

correlations among different metrics.

Different information can be extracted depending on the number of

data dimensions used:

• 1D (e.g..: pie charts, stacked bar charts): Gives an idea about the

distribution of data point occurrence. It can be used, for example,

to easily spot an uneven distribution of events. In the following

graph it is easy to spot the predominance of commits from a

single contributor in a project:

1D Graph Example: Gerrit open source project Commits per user piechart

This can give an idea of the level of collaboration among the person

in a team. A predominance of commits by one member of the

team might indicate a poor collaboration and cohesion among the

members of the team.

• 2D (e.g.: histograms): Show trends of the relation between 2

metrics, such time and the number of events. Peaks (sudden

changes in the trends) and flatness over time can be meaningful

patterns to spot. Here is an example showing the number of

commits over time for a project:

2D Graph Example: Gerrit open source project Commits per day histogram

Usually in a project, there are peaks of commits in the initial stage and

around delivery times, the throughput is constant the rest of the time.

A decrease in the throughput in the middle phase of a project might

highlight a issue. Of course, this metric alone is not enough to reach a

conclusion, it needs to be corroborated with other metrics, but it can

ring an alarm bell.

• 3D (i.e.: heatmaps, treemaps): Show correlations among 3

metrics, such as time, commit count, and author. Here is an

example:

3D Graph Example: Gerrit open source project Commits over years per

author heath-map

This can show the contribution of a single team member over time. A

1D graph would give a snapshot at the time of this situation, while a 3D

one can show the evolution over time. It can be used to spot changes in

team activities and behaviors.

Since these metrics can inform measurements about team dynamics

and code quality, KPIs can be set and easily monitored.

There are several open-source tools to achieve this; for example,

Kibana or Tableau. The examples shown before were built using the

former. In Kibana, a dashboard is a collection of visualisations. This

gives the flexibility of composing different dashboards for different

needs, reusing in components. Kibana is highly integrated with

Elastisearch and Logstash, and the 3 are referred together as the ELK

stack for log analytics.

TOOLS AND AAAS SOLUTIONS
All the techniques and tools described so far are freely available in the

open-source community or on commercial standalone applications.

OPEN-SOURCE VS. COMMERCIAL TOOLS

See below for a sample collection of open-source vs. commercial tools

you may use to implement a successful DevOps Pipeline with Analytics:

• VCS: Git/Gerrit Code Review (OpenSource) or GitHub (Commercial)

• ALM/Issue Tracking: Tuleap OpenALM (OpenSource) or Atlassian

Jira + Confluence (Commercial)

• CI: Jenkins (OpenSource) or Circle CI (Commercial)

• Distributed Storage: HDFS (OpenSource) or AWS-S3
(Commercial SaaS)

http://dzone.com/refcardz

D
Z

O
N

E
.C

O
M

/R
E

F
C

A
R

D
Z

7

INTRODUCTION TO DEVOPS ANALYTICS

BROUGHT TO YOU IN PARTNERSHIP WITH

• Processing: Apache Spark (OpenSource) on Hadoop or AWS-

EMR (Commercial SaaS)

• Indexing: ElasticSearch (OpenSource) or SPLUNK (Commercial)

• Dashboards: Kibana (OpenSource) or Tableau (Commercial)

Either choice for any category would require people with the necessary

skills to build, install, and maintain the entire software stack and keep it

active on a 24x7 basis.

THE SKILLS GAP PROBLEM

For large companies with a dedicated team configuring and managing

the entire pipeline, developing the skills to master all the tools is a plus.

However, it is always better to start the iterations with something pre-

configured or ready "out-of-the-box" to provide useful insights into the

CI/CD pipeline from the very beginning. Recent studies highlighted that

only 1 in 5 businesses have the skills needed to start and complete a

successful DevOps Analytics implementation by themselves.

While investing in training your team and learning new tools, you need

something to use as a reference to learn and iterate on the identification

of what are the most relevant KPIs for your DevOps analytics

improvement lifecycle.

ANALYTICS-AS-A-SERVICE

Analytics-As-A-Service (aka AaaS) comes to the rescue, where you can

get started very quickly and leverage your existing assets and data

and, at the same time, learn new concepts, train your team without

impacting your costs, and keep your ability to follow your BAU and

project activities.

AaaS tools are a cloud-based services that provide you with the final

result of what your main stakeholders need, updated in real-time and in

the form that your users need. You can get AaaS regardless of whether

your services are currently running on a public/private cloud or are

deployed on your own data centers. AaaS refers in fact to the analysis

and publication of the results of the data coming from your systems, but

does not require you to run or operate them.

That is great because it allows you to keep your existing CI/CD pipeline

infrastructure while giving you exactly what is missing: the insights on

how to improve it.

Written by Luca Milanesio

Luca Milanesio is the co-founder of GerritForge and has more than 25 years of software development and

application lifecycle management experience. He was one of the first contributors to Jenkins CI and maintainer

of the Gerrit Code Review Open Source project. He has fueled innovation worldwide in large enterprises by

improving their CI/CD pipeline and overall DevOps lifecycle.

DZone, Inc.

150 Preston Executive Dr. Cary, NC 27513

888.678.0399 919.678.0300

Copyright © 2018 DZone, Inc. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or
by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

DZone communities deliver over 6 million pages each month

to more than 3.3 million software developers, architects

and decision makers. DZone offers something for everyone,

including news, tutorials, cheat sheets, research guides, feature

articles, source code and more. "DZone is a developer’s dream,"

says PC Magazine.

http://dzone.com/refcardz
http://www.dzone.com

